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Abstract
We study theoretically the class of mixed-valent Kondo insulators, employing
a recently developed local moment approach to heavy Fermion systems using
the asymmetric periodic Anderson model (PAM). Novel features in spectra
and transport, observable experimentally but lying outside the scope of the
symmetric PAM or the Kondo lattice model, emerge naturally within the present
theory. We argue in particular that a shoulder-like feature in the optical
conductivity, that is distinct from the usual mid-infrared or direct gap peak
and has been observed experimentally in mixed-valent compounds such as
CeOs4Sb12 and YbAl3, is of intrinsic origin. Detailed comparison is made
between the resultant theory and transport/optical experiments on the filled-
skutterudite compound CeOs4Sb12, and good agreement is obtained.

1. Introduction

Kondo insulator compounds constitute a sub-class of lanthanide/actinide based heavy Fermion
materials. Characterised by small spectral and optical gaps, and an activated resistivity at
low temperatures, they have been under intense theoretical and experimental investigation for
many years (for reviews see [1–7]). From a theoretical perspective, the essential framework
for understanding heavy Fermion materials is the periodic Anderson model (PAM), wherein a
single correlated f-level in each unit cell of the lattice hybridizes locally with a non-interacting
conduction band.

Theories for Kondo insulators (KI) have generally been based on the particle–hole
symmetric limit of the PAM [1, 7–13], in which the f-level occupancy (nf) and the conduction
band filling (nc) are each equal to unity. Although nf = 1 = nc indeed satisfies the condition
for an insulating ground state, it is not the generic case, which by contrast is nf + nc = 2 (as
shown and discussed in [3, 10, 14]). The strong coupling limit of the PAM is of course the
Kondo lattice model with wholly localised f-electrons and hence nf = 1 necessarily, so one
naturally expects that if a particular KI is sufficiently strongly correlated then the particle–hole
symmetric PAM should provide a sound description of it. And indeed theories based on the
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symmetric PAM have been able to describe, even quantitatively, many aspects of a number of
these materials (see e.g. [13]).

One cannot however expect such theories to be complete, since the fact that the generic
condition for Kondo insulating behaviour is nf = 2 − nc [3, 10, 14] itself suggests that KI
materials are likely as a rule to be mixed-valent (nf �= 1); as indeed seems to be the case
experimentally [3, 7], and which behaviour lies beyond the scope of the symmetric PAM. A
more general treatment of KIs to encompass mixed-valent behaviour is thus clearly desirable,
based on the general asymmetric PAM with the constraint nf = 2 − nc �= 1. It is this we
consider here.

In a previous paper [15], working within the general framework of dynamical mean-
field theory (DMFT) [8, 9, 16, 17], we developed a local moment approach (LMA)
(see [12, 13, 18–25] for details) to heavy Fermion systems. This encompassed both strong
coupling Kondo lattice behaviour (nf → 1, nc arbitrary), as well as the mixed-valence regime
(nf and nc arbitrary). The theory was subsequently compared to experiments on several heavy
Fermion metals, and excellent quantitative agreement was found [26]. Although comparison
was made only to metallic systems, the insulating ground state is just a particular solution of the
same basic theory, that may be obtained by restricting the parameter set to the line nf + nc = 2.
In the present paper we treat the generic case by supplementing the theory of [15] with a
constraint on the total filling, nf + nc = 2, but allowing nf and nc to deviate from unity. This
enables us to capture the mixed-valency along with the insulating nature of these systems.

We begin with a brief overview of the model and formalism used. Theoretical results
for spectra and transport are discussed in section 3, followed by a detailed comparison with
experiments on the filled skutterudite compound CeOs4Sb12, and a brief conclusion in section 4.

2. Model and theory

In standard notation, the Hamiltonian for the PAM is given by:

Ĥ = −t
∑

(i, j),σ

c†
iσ c jσ + εc

∑

i,σ

c†
iσ ciσ

+
∑

i,σ

(
εf + U

2
f †
i −σ fi−σ

)
f †
iσ fiσ + V

∑

i,σ

( f †
iσ ciσ + h.c.). (2.1)

The first pair of terms describe the non-interacting conduction (c) band. The first gives
the kinetic energy (or ‘free’ conduction band Ĥ 0

c ), with the nearest neighbour hopping
ti j = −t scaled as ti j ∝ t∗/

√
Zc in the large dimensional limit of coordination number

Zc → ∞ [8, 9, 16, 17], and t∗ ≡ 1 taken throughout as the unit of energy; while the second
gives the c-orbital energy, such that varying εc simply shifts the centre of gravity of the free
conduction band relative to the Fermi level, and as such controls the conduction electron filling
nc. The third term in Ĥ represents the f-orbital energy (εf) and the on-site Coulomb repulsion
(U ) for the localised f-orbitals, and the final term denotes the local hybridization between the c
and f-electrons which is responsible for making the otherwise localized f-electrons itinerant.

The free conduction band may be diagonalised, Ĥ 0
c ≡ ∑

k,σ εkc†
kσ ckσ , with corresponding

density of states ρ0(ε) = N−1
∑

k δ(ε − εk). While the basic formalism is valid for any
underlying lattice and associated ρ0(ε), we consider in this paper the specific case of the
hypercubic lattice (which is Bloch-decomposable, unlike e.g. a Bethe lattice), for which
ρ0(ε) = exp(−ε2)/

√
π is a Gaussian.

Within DMFT, the f-electron self-energy �f(ω; T ), representing many-body scattering due
to electron interactions, is rendered purely local (i.e. site-diagonal or momentum independent).
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The local, site-diagonal Green functions for the conduction- (Gc(ω)) and f-electrons (Gf(ω))
are then given by [8, 9, 14, 16, 17]

Gc(ω) =
∫ ∞

−∞
dε

ρ0(ε)

ω+ − εc − V 2

ω+−εf−�f(ω;T )
− ε

≡
∫ ∞

−∞
dε ρ0(ε) Gc(ε; ω) (2.2a)

Gf(ω) = 1

ω+ − εf − �f(ω; T )

[
1 + V 2

ω+ − εf − �f(ω; T )
Gc(ω; T )

]
(2.2b)

(with ω+ = ω + i0+). Solution of these DMFT equations naturally requires a knowledge—
and self-consistent determination—of the f-electron self-energy �f(ω; T ), which DMFT by
itself does not of course prescribe. For this, we employ the physically transparent local
moment approach (LMA) [12–15, 18–26]. This handles non-perturbatively all interaction
strengths from weak to strong coupling, and all relevant energy/temperature scales, while at
the same time recovering the dictates of Fermi liquid behaviour at low energy/temperature
scales. Originally introduced to describe Anderson impurity models [18–25], for which it is
found to agree well with e.g. numerical renormalization group calculations and a number of
exact results, lattice-based heavy Fermion systems have also been considered within DMFT +
LMA [12–15, 26].

Here we sketch in brief only the essential elements of the LMA:

(i) The starting point is simple static mean-field, i.e. unrestricted Hartree-Fock. This has the
virtue of recognising local moment formation as the first effect of electron interactions, by
introducing the possibility of local moments from the outset. But by itself it is inadequate,
for two reasons. First, it results in a (locally doubly-degenerate) symmetry broken mean-
field state, which is not perturbatively connected (in U ) to the non-interacting limit and
in consequence violates Fermi liquid behaviour at low energies. Second, its inherently
static nature cannot by construction capture electron correlation effects. It is these signal
limitations the LMA overcomes.

(ii) Electron correlations, embodied in dynamical self-energies, are incorporated within
the framework of a spin-rotationally invariant two-self-energy description which is an
inevitable consequence of the underlying two mean-field saddle points (and from which
the conventional single self-energy �f(ω; T ) is recovered simply as a byproduct). The
resultant dynamical self-energies are built diagrammatically from, and are self-consistently
determined functionals of, the underlying mean-field propagators. They include in
particular a non-perturbative class of diagrams that capture the spin-flip dynamics central
to the physics of the PAM.

(iii) The third, key element of the LMA is that of symmetry restoration [12, 19, 20, 24]: self-
consistent restoration of the symmetry broken at pure mean-field level, and hence correct
recovery of the low-energy local Fermi liquid behaviour that reflects adiabatic continuity
to the non-interacting limit. This is embodied in a single self-consistency condition on
the two-self-energies precisely at the Fermi level (ω = 0), which in practice amounts to a
self-consistent determination of the local moment (supplanting the simple ‘gap equation’
for such that arises at crude mean-field level).

(iv) Luttinger’s theorem [2, 27], itself a reflection of perturbative continuity to the non-
interacting limit (i.e. IL = Im

∫ 0
−∞ dω (∂�f(ω; T = 0)/∂ω)Gf(ω) = 0), is also satisfied

by the LMA [14]. We note too that adiabatic continuity to the non-interacting limit is
characteristic of both the heavy Fermion (metallic) and Kondo insulating states [12, 13].

Full details regarding the structure and implementation of the Local Moment Approach for
the generic asymmetric PAM are given in [14, 15], to which the reader is referred for further
information.
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Since our objective is to study generic Kondo insulators, corresponding to nc + nf = 2
(for T = 0 where the distinction between an insulator and a metal has strict meaning), we now
examine the general conditions under which an insulating ground state is obtained. To this end
we note that the Luttinger theorem IL = 0 can be expressed as the following exact statement
for the Fermi surface of the PAM, as shown in [14]:

1
2 (nc + nf) =

∫ −εc+1/ε̃∗
f

−∞
ρ0(ε) dε + θ(−ε̃∗

f ) (2.3)

(with θ(x) the unit step function). Here ε̃∗
f = ε∗

f /V 2, and ε∗
f is the renormalised or effective

f-level given by ε∗
f = εf + �R

f (ω = 0; T = 0) (where �R
f = Re�f).

From this it follows that, for any conduction band ρ0(ε), the KI filling constraint nc +nf =
2 is satisfied if ε∗

f = 0 (whether ε∗
f = 0+ or 0−). Moreover for a non-compact bare density of

states ρ0(ε), such as the Gaussian appropriate to the hypercubic lattice we consider, ε∗
f = 0 is

the only possibility that satisfies nc + nf = 2. As such, ε∗
f = 0 is the general condition for a

KI that we seek; with the (particle–hole) symmetric KI (εf = −U/2 and εc = 0) simply the
particular case for which nc = 1 = nf.

The condition ε∗
f = 0 also leads naturally to a gap at the Fermi level (ω = 0) in the

T = 0 single-particle spectra Dc(ω) and Df(ω). This is most easily seen from the limiting
low-frequency behaviour of equations (2.2a) and (2.2b) for T = 0, obtained from a low-ω
quasiparticle expansion [14] and given by

Dc(ω) ∼ ρ0

(
−εc − 1

ω̃ − ε̃∗
f

)
(2.4a)

V 2 Df(ω) ∼ 1

(ω̃ − ε̃∗
f )2

ρ0

(
−εc − 1

ω̃ − ε̃∗
f

)
(2.4b)

where ω̃ = ω/ωL. Here, ωL = Z V 2/t∗ is the characteristic low-energy Fermi liquid scale in
the problem (with Z = [1 − (∂�R

f (ω; T = 0)/∂ω)ω=0]−1 the usual quasiparticle weight,
or inverse mass renormalization factor). From this it is readily seen that with ε∗

f = 0,
Dc(ω = 0) = 0 (and likewise for the f-spectrum), as one expects for an insulator.

In this paper we implement the filling condition nc + nf = 2 simply by supplementing the
LMA with the T = 0 constraint ε∗

f = εf + �R
f (ω = 0; T = 0) = 0 (which is algorithmically

simple), ensuring thereby direct access to the generic Kondo insulating states of interest. The
LMA yields directly the local Green functions (Gc and Gf) and self-energies, knowledge of
which is well known to be sufficient within DMFT [8, 9, 16, 17] to determine dc transport and
optical properties, as detailed e.g. in [13, 15]. In the next section, we discuss our theoretical
results.

3. Theoretical results and discussion

The PAM, equation (2.1), is characterised by four ‘bare’ material parameters, U, V , εc and the
f-level asymmetry η = 1+2εf/U (or equivalently εf itself). The local spectra naturally depend
on these parameters, and the (T = 0) total filling is given by

nc + nf = 2
∫ 0

−∞
dω [Dc(ω; U, V , εc, η) + Df(ω; U, V , εc, η)]. (3.1)

For a metallic phase, (U, V , εc, η) are in general independent parameters. But for the Kondo
insulating state, the constraint nc + nf = 2 obviously implies that only 3 of the bare parameters
are independent, e.g. η ≡ η(U, V , εc).
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Figure 1. Variation of f-level asymmetry η with |εc| (= −εc) for the Kondo insulating state, for
fixed V 2 = 0.2 and three different interactions U = 2.6 (solid line), 3.8 (dashed line) and 5.2
(point–dash). With increasing |εc|, the insulator becomes progressively more mixed-valent (the
f-electron filling dropping from nf = 1 for |εc| = 0 to nf 
 0.63 for |εc| = 0.4).

We illustrate this is figure 1, showing the resultant η versus |εc| (with εc � 0 and hence
nc � 1), for a fixed value of the hybridization V and three different interactions U . All curves
meet at the origin, this being the symmetric KI (nf = 1 = nc) for which η = 0 = εc for all U
and V , i.e. η(U, V , εc = 0) = 0 is independent of U and V . Away from εc = 0 however, η

depends generically on all of U, V and εc. On increasing |εc| for any given U and V , as in
figure 1, the system becomes progressively mixed-valent: η increases (i.e. the f-level moves
upwards towards the Fermi level), and nf steadily diminishes from nf = 1 at εc = 0, with a
concomitant increase in the resultant quasiparticle weight/inverse mass renormalization Z (and
hence in the low-energy scale ωL = Z V 2). In fact over the U -range shown in figure 1, the
resultant nfs for given εc barely change with U , nf dropping to 
 0.63 for |εc| = 0.4.

To illustrate typical local single-particle dynamics, figure 2 shows the T = 0 LMA c- and
f-spectra versus ω̃ = ω/ωL (left and right panels respectively) for a fixed εc = −0.4, U = 2
and a range of different hybridization couplings V as indicated. The associated nf differs only
slightly with V over the range shown, with nf 
 0.6 indicating mixed-valent character. The
single-particle spectra for this representative asymmetric KI are indeed seen to be gapped at
the Fermi level, with magnitude ∼ωL, and the obvious key point is that the gap is asymmetric
about the Fermi level (it is of course strictly soft for a hypercubic lattice, but with exponentially
small spectral density in the vicinity of the Fermi level). The four sets of spectra are seen
to be quite distinct away from the Fermi level, as one expects. However the limiting low-
frequency spectral forms are given (asymptotically exactly) by equations (2.4a), (2.4b) which,
with ε∗

f = 0 as appropriate to the KI, are seen to depend solely on εc and ω̃; i.e. they should
be independent of V or U (which we note has nothing per se to do with the ‘universal scaling’
of spectra characteristic of the strong coupling limit nf 
 1 [12–15]). That the LMA correctly
recovers this behaviour is self-evident from the figure.

3.1. Optical conductivity

We consider now the frequency dependence of the optical conductivity σ(ω; T ), focusing
specifically on T = 0 (results at finite-T will be included in the following section). Figure 3

5
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Figure 2. The local conduction electron spectra (left panel) and f-electron spectra (right panel, with
the constant �0 = πV 2ρ0(−εc)) are shown versus ω̃ = ω/ωL for a fixed U = 2.0, εc = −0.4
and varying V 2 = 0.005 (solid line), 0.01 (dotted), 0.03 (dashed) 0.075 (double dot–dashed). An
asymmetric gap is seen straddling the Fermi level. Inset: magnified view of the low frequency
f-spectrum.
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Figure 3. Left panel: Optical conductivity σ(ω; 0) versus ω̃ = ω/ωL for a representative mixed-
valent Kondo insulator (nf 
 0.73), with U = 3.8, V 2 = 0.2, εc = −0.3 and η = 0.8. Right panel:
the renormalized bandstructure ω(εk) versus εk (solid lines). For the dotted lines, see discussion in
text.

shows the optical conductivity obtained from the LMA for a representative mixed-valent Kondo
insulator. The dominant feature in the optics is the usual strong, direct gap absorption (‘mid-
infrared peak’). In the absence of scattering due to electron interactions there would be no
absorption whatever below the direct gap [13, 15]; but, just as for the (particle–hole) symmetric
KI considered in [13], interaction-induced many-body scattering leads as seen to continuous
absorption all the way down to the indirect gap scale ω = �ind = 2ωL (which is why σ(ω; 0)
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is shown as a function of ω̃ = ω/ωL, figure 3 showing there is indeed negligible absorption
below ω̃ 
 2).

Figure 3 also shows that the optical conductivity possesses a distinct low-frequency
shoulder, lying somewhat above the indirect gap (at ω̃ ≈ 10 in the present example).
Such a feature occurs neither in the non-interacting limit nor for the interacting symmetric
KI [13]. From investigation of a wide range of underlying material parameters however,
we find it to be entirely typical of interacting mixed-valent (necessarily asymmetric) Kondo
insulators, albeit naturally becoming less pronounced as the symmetric limit is approached. In
previous work [15, 26] we have also found such behaviour to be characteristic of correlated
intermediate valence metals. We conclude therefore that a low-frequency shoulder should
typically exist, as an intrinsic optical feature, in interacting mixed-valent systems whether
metallic or insulating; and that it arises from a combination of many-body scattering and
mixed-valency. Experimentally, such a shoulder has been observed in the optical conductivity
of Kondo insulators such as CeOs4Sb12 [28] as well as in intermediate valence metals such
as YbAl3 [29]. In [26] we considered the case of YbAl3 in detail, and obtained very
good agreement between theory and experiment, including striking reproduction of the low-
energy optical shoulder. Analogous comparison for CeOs4Sb12 will be given in the following
section.

First, however, we seek to interrogate the optics in more microscopic detail. In the absence
of vertex corrections (as appropriate to DMFT [8, 9, 16, 17]) the T = 0 optical conductivity is
given by [13, 15]

σ(ω; 0) ∝
∫ ∞

−∞
dε ρ0(ε) I (ε; ω) (3.2a)

(bar extraneous constants), with

I (ε; ω) = 1

ω

∫ 0

−ω

dω1 Dc(ε; ω1)Dc(ε; ω1 + ω). (3.2b)

Here, Dc(ε; ω) ≡ Dc(εk = ε; ω) is the εk-resolved conduction electron spectrum (accessible
e.g. via ARPES): Dc(ε; ω) = −(1/π) Im Gc(ε; ω), with the k-space propagator Gc(εk; ω)

given by

Gc(εk; ω) = [γ (ω) − εk]−1 (3.3a)

where

γ (ω) = ω+ − εc − V 2

ω+ − εf − �f(ω; T )
(3.3b)

(such that the local, site-diagonal propagator Gc(ω) = N−1
∑

k Gc(εk; ω) ≡∫
dε ρ0(ε)Gc(ε; ω) as in equation (2.2a)).

The physical content of equations (3.2) is clear: for given ε ≡ εk (as in equation (3.2b)),
optical transitions occur from a state below the Fermi level (lying at ω1 < 0) to a state ω

higher in energy that lies above the Fermi level (at ω1 + ω > 0); all transitions being ‘direct’
in the sense that absorption occurs for given/fixed εk. The net optical conductivity at frequency
ω is then, as in equation (3.2a), the sum of all such processes over the full range of ε ≡ εk

(with density ρ0(ε) = N−1
∑

k δ(εk − ε)). This picture is of course wholly familiar at an
elementary level in the context of non-interacting electrons (or ‘renormalized’ non-interacting
electrons, as considered below). But we emphasise that it is quite general: it applies equally
well to the fully interacting case, where the states between which absorptive transitions occur
are many-body states. There is of course an obvious difference between the interacting and
non-interacting cases, namely the existence of scattering (and hence ‘lifetime’ effects) due to

7
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electron interactions in the former case. That in turn generates a profound difference between
optics in the two cases, which we now consider since it also throws light on the optical
conductivity shown in figure 3.

The simplest description of the optics is at the level of ‘renormalized bandstructure’ [9].
Here, γ (ω) in equation (3.3a) is taken to be purely real, γ (ω) ≡ γ R(ω), neglect of
γ I(ω) = Im γ (ω) meaning from equation (3.3b) that the imaginary part of the f-electron self-
energy—the source of all scattering—is completely neglected. In addition, γ R(ω) is further
approximated by its asymptotic low-frequency behaviour, which (from equation (3.3b)) comes
from that for �R

f (ω; 0) ≡ Re�f(ω; 0), namely the simple Taylor expansion �R
f (ω; 0) ∼

�R
f (0; 0) − (1/Z − 1) ω (with Z the usual quasiparticle weight). With this approximation

Gc(εk; ω) 
 [γ R(ω) − εk]−1 has poles at two frequencies, ω = ω+(εk) > 0 above the Fermi
level and ω = ω−(εk) < 0 below it. These are given explicitly by

ω±(εk) = 1
2

[
(εc + εk) ±

√
(εc + εk)2 + 4Z V 2

]
(3.4a)

(where we use the fact that the renormalized level ε∗
f = εf + �R

f (0; 0) = 0 for a generic KI, as
discussed in section 2), with a gap between them �̃(εk) = ω+(εk) − ω−(εk) of

�̃(εk) =
√

(εc + εk)2 + 4Z V 2. (3.4b)

Equation (3.4a) is simply the renormalized bandstructure of the problem (reducing trivially to
the non-interacting limit result for Z = 1), the two branches ω+(εk) and ω−(εk) reflecting
physically the fact that, per unit cell, a single f-level hybridizes locally to a single conduction
band. The minimum gap between them, the ‘direct gap’ at this level, occurs for εk = −εc and
is thus �dir = �̃(εk = −εc) = 2

√
Z V .

Since the resultant Dc(εk; ω′) ∝ Im Gc(εk; ω′) contains two poles, at ω′ = ω+(εk) and
ω−(εk), it follows from equation (3.2b) that optical absorption can only arise from transitions
between these two δ-peaks—provided of course their separation ω+(εk) − ω−(εk) concides
with the requisite absorption frequency ω; and in consequence that there is no absorption at all
(i.e. σ(ω; 0) = 0) for ω � �dir = 2

√
Z V . This level of description may be improved, very

slightly, by retaining Gc(εk; ω) 
 [γ R(ω) − εk]−1 but with the full LMA γ R(ω) employed
instead of its asymptotic low-ω expansion. The results of such a calculation are shown in
figure 3 (right panel, solid lines, where the ‘band branching’ seen over a narrow range around
εk = 0 is simply a consequence of retaining γ R(ω) but neglecting γ I(ω)).

The above ‘renormalized band’ description, commonly employed though it is, is
qualitatively inadequate. The picture changes markedly when interaction-induced scattering
is properly retained, as embodied in the imaginary part of the f-electron self-energy and hence
a non-vanishing conduction electron scattering rate γ I(ω). To illustrate this, figure 4 shows the
full LMA conduction electron spectra Dc(εk; ω) versus ω for two values of ε ≡ εk, namely
εk = −εc = 0.3 (left panel) and εk = 0.6 (right panel). At the simplistic level of renormalized
bands, as in the right panel to figure 3, each of these spectra would consist of one pole below the
Fermi level (ω = 0) and one above it. Reality is clearly different: the spectra are significantly
broadened due to interactions and form a continuum (save for the expected gap in the immediate
vicinity of the Fermi level). It is for this reason that, in contrast to the renormalized band
picture, conduction electron spectra for essentially any εk contribute to optical absorption for
all frequencies down to the lowest energy (indirect) gap scale.

In figure 4 we also mark (by solid arrows) the locations in Dc(εk; ω) of the two nominal
poles that would arise at the renormalized band level (their positions can be read off from the
right panel in figure 3 at the appropriate εk). These are seen to correspond rather accurately
to the position of the dominant peak maxima in Dc(εk; ω). Just above the Fermi level, an
additional small peak (marked by an arrow) can also be seen in figure 4. This feature does

8
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Figure 4. For the same bare parameters as in figure 3. Left panel: T = 0 conduction electron
spectrum Dc(εk; ω) versus ω, for fixed εk = 0.3 (= −εc). The solid arrows indicate the location
of the pure poles that would arise from a simple renormalized band picture (following from the
renormalized bandstructure shown in figure 3, right panel). An additional spectral feature above the
Fermi level, arising from interactions, is indicated by a single arrow. Right panel: the same, shown
for an εk = 0.6.

not of course have any counterpart at the renormalized band level, and we find its existence
to be characteristic of mixed-valent Kondo insulators (it does not occur in the particle–hole
symmetric limit). These spectral features, two peaks above and one below the Fermi level, are
found to be characteristic of the conduction spectra Dc(εk; ω) for all εk. The positions of the
two peak maxima above the Fermi level in the full Dc(εk; ω) can be mapped out as a function
of εk, and are shown in figure 3 (right panel, dotted lines). Note in particular that the lower-
energy such peak lies close to, but slightly above, the Fermi level for all εk. We thus expect (see
equation (3.2b)) significant optical absorption to this peak from the dominant spectral peak in
Dc(εk; ω) below the Fermi level; particularly at relatively low frequencies where (see figure 3
right panel) for εk � 0.3 or so the latter peak itself lies close to the Fermi level, exhibits only
modest dispersion with εk, and is spectrally sharp (as in figure 4 right panel).

We return now to the optical conductivity σ(ω; 0) given by equations (3.2a), (3.2b), shown
in the left panel of figure 3 for the representative bare parameters indicated, and again on a
linear-ω scale in figure 5 (solid line). With the preceding comments in mind, our aim is to
determine what range of values of ε ≡ εk give the primary contribution to σ(ω; 0) in different
frequency intervals—in particular, frequencies in the vicinity of (a) the dominant direct gap
absorption (ω ≈ 0.4 in the present example), (b) the low-frequency shoulder (ω ≈ 0.1), and
(c) the lowest frequency scales down to the indirect gap (ω ≈ 0.02).

To that end, we simply partition the ε-integral in equation (3.2a) for σ(ω; 0), into
contributions from different ε-intervals. This is shown in the left panel to figure 5, where
the separate contributions to the total σ(ω; 0) (solid line) from ε ≡ εk > 0.1 (point–dash line),
0 < εk < 0.1 (dashed) and εk < 0 (dotted) are shown. From this it is clear that the dominant
contribution to σ(ω; 0) in all three ω-regimes of interest arises from εk > 0.1 (the associated
renormalized bandstructure being shown in the right panel of figure 3). To distinguish the ω-
regimes, the right panel in figure 5 shows the contribution to σ(ω; 0) from 0.1 < εk < 0.5
(dashed line) and εk > 0.5 (dotted). From the renormalized band description discussed above,
the direct gap occurs at εk = −εc (= 0.3 in the present example); and consistent both with
this and the inevitable broadening induced by scattering, the dominant contribution to σ(ω; 0)

in the vicinity of the strong direct gap absorption at ω ≈ 0.4 is indeed seen to arise from the
interval 0.1 < εk < 0.5—i.e. εk = −εc ± 0.2. In contrast, as seen in particular from the
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Figure 5. For the same bare parameters as in figure 3. Left panel: the T = 0 optical conductivity
σ(ω; 0) versus ω (solid line) and the contribution to it arising from ε ≡ εk > 0.1 (point–dash),
0 < εk < 0.1 (dashed) and εk < 0 (dotted). Right panel: showing further the contributions to
σ(ω; 0) from 0.1 < εk < 0.5 (dashed line) and εk > 0.5 (dotted). Inset: shown on a lower-ω scale.

right inset to figure 5, absorption on the lowest frequencies down to the order of the indirect
gap is controlled by εk � 0.5. This in turn is consistent with the form of Dc(εk; ω) for εks in
this range, exemplified by the right panel in figure 4 and discussed above. Finally, the low-ω
shoulder in σ(ω; 0) (at ω ≈ 0.1) that is typical of the mixed-valent Kondo insulator, is seen to
stem mainly from the interval 0.1 < εk < 0.5, its existence reflecting the small spectral feature
in Dc(εk; ω) above the Fermi level discussed above, and shown in figure 4.

4. Comparison to transport in CeOs4Sb12

The filled-skutterudite compounds RT4X12 (R = rare earth, T = Transition metal and X =
pnictide) have attracted much experimental interest, due in part to their possible applications as
advanced thermoelectric materials [30]. Recently, several groups have reported investigations
of a cerium based filled-skutterudite Kondo insulator, CeOs4Sb12. Here we make comparison
of the theory outlined in this paper to experimental measurements of dc and optical transport in
CeOs4Sb12.

We consider first the dc transport. In this compound the phonon contribution to
the dc resistivity is quite significant, so for comparison to theory we need to extract the
magnetic contribution, ρmag(T ), from the dc resistivity measured directly. This is achieved
by subtracting the phonon contribution—itself estimated conventionally as the resistivity of
LaOs4Sb12 [31, 32] (see [26] for a detailed discussion)—from the experimentally measured
dc resistivity [33]; and is shown as circles in figure 6. Another experimental group has also
reported ρmag(T ) itself [31]; and although their absolute magnitudes are quite different from
those of [33], a simple y-axis rescaling is sufficient to collapse the two sets of data, as indicated
by squares and circles in figure 6 (and indicating simply distinct sample geometries in the two
cases).

The low temperature (T � 30 K) resistivity can be fitted to a exp[(T ∗/T )1/2] form,
suggesting the dominant mechanism of transport in this temperature range to be Efros–
Shklovskii type variable range hopping [34] (which extrinsic behaviour is not of course
included in the present theory). A shallow maximum is seen in figure 6 at T ∼ 100 K,
beyond which ρmag(T ) decays monotonically. A rough estimate of the low energy scale
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Figure 6. Experimental dc resistivity of CeOs4Sb12 with the phonon contribution subtracted
(circles [33] and squares [31]) compared to the theoretically determined ρ(T ) (solid line), which
has been rescaled by ωL = 86 K and 1/σ0 = 74 μ� cm. The inset shows the corresponding dc
conductivities.
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Figure 7. The left panel shows the experimentally measured optical conductivity of CeOs4Sb12 [28]
for various temperatures. The right panel shows the theoretically determined σ(ω; T ) for the same
model parameters as in figure 6 and similar temperatures to experiment.

(ωL ≡ Z V 2/t∗) in this system may be obtained through an estimation of the (indirect) gap
in the experimental optical conductivity [28], shown in the left panel of figure 7. This yields
�ind ∼ 15 meV 
 175 K, which thus gives the low energy scale ωL = �ind/2 
 90 K (see
also the left panel of figure 3 and [13]).

An idea of the parameter regime this system belongs to can be gleaned from two qualitative
features evident in the (ω, T )-dependence of the experimental σexp(ω; T ) [28] shown in
figure 7. First, the highest temperature at which σexp(ω; T ) is measured is 295 K which is
∼3ωL, while the optical conductivity at the same temperature is affected up to ∼0.3 eV 

40ωL. The fact that the thermally induced spectral weight redistribution is over a range of
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frequencies much higher than the temperature at which σexp(ω; T ) is measured is characteristic
of relatively weak correlations [13]. Second, a closer look at the low-frequency structure of
σ(ω; T = 8 K) reveals an additional absorption feature at ω ∼ 30 meV, which in the context
of the theoretical results obtained above (see e.g. figure 3), is suggestive of mixed-valence
character.

With this in mind, we choose an εc = −0.3, and for various U, V 2 calculate σ(ω; T ). We
find that the dc resistivity (ω = 0) and the optical conductivity determined at U ∼ 5.5, V 2 =
0.5 match best with the experiment, with ωL ∼ 86 K. With these parameter values the f-level
asymmetry η is found to be 0.9, implying nf = 0.75 and nc = 1.25 consistent with mixed valent
behaviour, while the quasiparticle weight Z 
 0.083 implying a relatively low effective mass
∼12 consistent with modest correlations. The resultant theoretical dc resistivity is shown in
figure 6 (solid line, with the x-axis scaled by ωL = 86 K and the y-axis by 1/σ0 = 74 μ� cm).
And comparison to experiment is seen to be rather good for T � 30 K or so (recall as above
that transport for T � 30 K is dominated by variable range hopping [34], which is naturally
absent from the theory).

The theoretical optical conductivity evaluated for the same model parameters as in figure 6
is shown in the right panel of figure 7, for similar temperatures as the experiment [28]
(left panel). An arrow marks the additional absorption seen as a shoulder, which arises at
ω ∼ 40 meV and thus compares well with the experimental value of ∼30 meV. The theoretical
direct gap peak appears at ω ∼ 100 meV, while the corresponding experimental peak position is
∼70 meV. The overall theoretical lineshape and its thermal evolution also matches rather well
with experiment. We add further that this comparison does not depend crucially on εc being
equal to −0.3. Varying εc by ±0.1 does not change the qualitative picture, although optimal
quantitative agreement arises for εc = −0.3, U = 5.5 and V 2 = 0.5 as employed above.

5. Conclusion

We have described in this paper a many-body theory for mixed-valent Kondo insulators,
employing a local moment approach to the periodic Anderson model within the framework
of dynamical mean field theory. Kondo insulators were argued as a rule to be mixed-valent,
with nf = 2 − nc �= 1, and which regime of behaviour is not captured by the particle–hole
symmetric limit of the PAM (nf = 1 = nc). To that end we have considered the general
asymmetric PAM, together with the constraint nf + nc = 2 which ensures an insulating gap in
the (T = 0) single-particle spectrum and related dynamics.

Single-particle spectra, as well as optical and dc conductivities, have been considered, and
exhibit features specific to mixed-valent behaviour. The k-resolved conduction electron spectra
are found to contain additional absorption features above the Fermi level, giving rise in turn to
an intrinsic shoulder-like absorption in the optical conductivity at frequencies lower than the
direct (mid-infrared) gap. We emphasise that such a structure is found to be characteristic
of the interacting mixed-valent case, and not restricted to either an insulating or metallic
ground state. Thus we believe that the shoulder-like feature seen experimentally in the optical
conductivity of mixed-valent materials such as the insulator CeOs4Sb12 and the metal YbAl3,
arises intrinsically from a combination of many-body scattering and intermediate valence. A
direct comparison between theory and transport/optical experiments on CeOs4Sb12 has been
given. This yields good quantitative agreement, both reaffirming the view of CeOs4Sb12 as a
mixed-valent hybridization gap material [33, 34] and showing that the theory described here
for generic mixed-valent Kondo insulators can account for the transport/optical properties of
these systems.
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